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Abstract

The pigeonhole principle is a powerful tool that is found in all kinds of combinatorial problems.
Using the principle we can easily construct contradiction proofs to almost any problem that requires
some kind of counting. Moreover, the Pigeonhole principle is so useful that it has applications in
combinatorial geometry, number theory, algebra, and even statistics. For example, thanks to it
we know that in New York City, there’s at least 2 people with the same number of hairs! We’ll
go over Erdos-Szerekes’s Upper bound for Ramsey numbers, Kronecker Dirichet’s Approximation
theorems, and some interesting Olympiad problems from the Moscow Math Olympiad, Ireland
Math Olympiad, USAMO, and IMO.

1 Introduction to Pigeonhole Principle

General Introduction and a few very basic examples. Maybe a visual representation fron the internet.

2 Problems

2.1 Problem 1

Problem 1G - Lint and Wilson
Show that a finite simple graph with more than one vertex has at least two vertices with the same
degree.

2.2 Problem 2

Problem 1: Erdos-Szerekes Upper bound - Po-Shen Loh, June 2012
The Ramsey Number R(s, t) is the minimum integer n for which every red-blue coloring of the edges
of Kn contains a completely red Ks or a completely blue Kt. Prove that:

R(s, t) ≤
(
s+ t− 2
s− 1

)

2.3 Problem 3

Problem 2: Moscow Math Olympiad - Po-Shen Loh, June 2012

Show that any convex polyhedron has two faces with the same number of edges.

2.4 Problem 4

Problem 4: Ireland Math Olympiad 2012 - Po-Shen Loh, June 2012

The numbers 1, 2, ..., 4n2 are written in the unit squares of a (2n) x (2n) array, 3 ≤ n. Prove that
there exist n + 1 columns in the array such that in each of them any number is less than the sum of
the remaining 2n - 1 numbers in that column.
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2.5 Problem 5

USAMO 1976
Every square in a 4 x 7 array is colored either white or black. Show that there always is a

monochromatic “constellation” consisting of the 4 corners of an axis-parallel rectangle.

2.6 Problem 6

Problem 6: Erdos-Szekeres - Po-Shen Loh, June 2010

Prove that every sequence of n2 distinct numbers contains a subsequence of length n which is
monotone (i.e. either always increasing or always decreasing).

2.7 Problem 7

Kronecker’s theorem
Let x be an irrational number, and let xn = nx be the fractional part of nx. Show that the sequence
x1, x2, ... is dense in the interval [0, 1). This means that for every real number r ∈ [0, 1), and every
ϵ > 0, there is some n such that xn is within ϵ of r.

2.8 Problem 8

Example 9 [IMO Shortlist 2001, C6] - Olympiad Combinatorics, Sriram

For a positive integer n define a sequence of zeros and ones to be balanced if it contains n zeros
and n ones. Two balanced sequences a and b are neighbors if you can move one of the 2n symbols
of a to another position to form b. For instance, when n = 4, the balanced sequences 01101001 and
00110101 are neighbors because the third (or fourth) zero in the first sequence can be moved to the
first or second position to form the second sequence. Prove that there is a set S of at most balanced
sequences such that every balanced sequence is equal to or is a neighbor of at least one sequence in S.

2.9 Problem 9

Example 11 [Russia 2011, adapted] - Olympiad Combinatorics, Sriram

There are N > n2 stones on a table. A and B play a game. A begins, and then they alternate.
In each turn a player can remove k stones, where k is a positive integer that is either less than n or a
multiple of n. The player who takes the last stone wins. Prove that A has a winning strategy.

2.10 Problem 10

Problem 13 - Po-Shen Loh, June 2010

The Fibonacci numbers are defined by F1 = F2 = 1 and Fn = Fn1 + Fn2 for 3 ≤ n. If p is a prime
number, prove that at least one of the first p+ 1 Fibonacci numbers must be divisible by p.

3 Solutions

3.1 Problem 1

Assume the graph G has n vertices. The possibilities for the degree are 0, ..., n− 1. However, G cannot
have one vertex of degree 0 and one vertex of degree n− 1, because these two vertices would need to
be adjacent to satisfy degree n − 1. Using the pigeonhole principle, we must pick the n degrees (one
for each vertex), from a set of n − 1 answers (since we cannot have both 0 and n − 1). Hence, one
degree must be repeated.
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3.2 Problem 2

Observe that R(s, t) ≤R(s 1, t) + R(s, t 1), because if we have that many vertices, then if we select
one arbitrary vertex WLOG, then it cannot simultaneously have < R(s - 1, t) red neighbors and <
R(s, t - 1) blue neighbors, so we can inductively build either a red Ks or a blue Kt. But we have:(

(s− 1) + t− 2
s− 2

)
+

(
s+ (t− 1)− 2

s− 1

)
=

(
s+ t− 2
s− 1

)
because in Pascal’s Triangle the sum of two adjacent guys in a row equals the guy directly below

them in the next row.

3.3 Problem 3

Consider the dual graph, where faces are vertices and adjacent faces give edges. Every graph has two
vertices of equal degree, which we found in Problem 1.

3.4 Problem 4

Suppose for contradiction that the first n columns all have that the largest number is at least the sum
of all other numbers in that column. Let B be the sum by taking the largest number in each of those
columns, and let A be the sum by taking all but the largest number in each of those columns. Then
we have A ≤ B. However, the smallest A can be is if it is the first n(2n1) numbers, and the largest
B can be is if it is the last n numbers. Hence, we have the following:

1 + 2 + 3 + ...+ n(2n− 1) ≤ (4n2 − n+ 1) + (4n2 − n+ 2) + ...+ 4n2

1 + 2 + 3 + ...+ n(2n− 1) ≤ (4n2 − n) + 1 + (4n2 − n) + 2 + ...(4n2 − n) + n
1 + 2 + 3 + ...+ n(2n− 1) ≤ n(4n2 − n) + (1 + 2 + 3 + ...+ n)

By using Gaussian summation on both sides, we can get that:

•
n(2n−1)∑

i=1

i =
n(2n− 1)[n(2n− 1) + 1]

2

•
n∑

i=1

i =
n(n+ 1)

2

When we substitute those results into our inequality, we get:
n(2n−1)[n(2n−1)+1]

2 ≤ n(4n2 − n) + n(n+1)
2

n(2n− 1)[n(2n− 1) + 1] ≤ 8n3 − 2n2 + n(n+ 1)
n(2n− 1)[n(2n− 1) + 1] ≤ n(8n2 − 2n+ n+ 1)
(2n− 1)[n(2n− 1) + 1] ≤ 8n2 − n+ 1
n(2n− 1)2 + (2n− 1) ≤ 8n2 − n+ 1
n(4n2 − 4n+ 1) + 2n− 1 ≤ 8n2 − n+ 1
4n3 − 4n2 + n+ 2n− 1 ≤ 8n2 − n+ 1
4n3 − 4n2 + 3n− 1 ≤ 8n2 − n+ 1
4n3 ≤ 12n2 − 4n+ 2 2n3 ≤ 6n2 − 2n+ 1

It’s obvious that the functions on bots sides of the inequality are continuous, growing as n → ∞,
and that the LHS will dominate the RHS. This happens when 3 ≤ n (this can be checked pretty easily
in a number of ways). Thus, we’re done!

3.5 Problem 5

Key observation: 7 =

(
4
2

)
+ 1. First, suppose that some column contains 3 or more of the same color,

say black. WLOG, they are in the first 3 rows. Then, for the other 6 columns, there cannot ever be 2
black in the first 3 rows, i.e., there must be at least 2 white in the first 3 rows. The number of ways
to do this is:
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3while → 1
2white → 3

Therefore, by the fifth column, there is repetition, and this gives the 4 corners. Thus, in every column

there are exactly 2 of each color. But then after

(
4
2

)
columns, there is a repeat, so we get the 4 corners

again!

3.6 Problem 6

For each of the n2 indices in the sequence, associate the ordered pair (x, y) where x is the length of
the longest increasing subsequence ending at x, and y is the length of the longest decreasing one. All
ordered pairs must obviously be distinct. But if they only take values with x, y ∈1, . . . , n 1, then
there are not enough for the total n2 ordered pairs. Thus n appears somewhere, and we are done!

3.7 Problem 8

Call such a set S a dominating set. Our idea is to partition the set of

(
2n
n

)
balanced sequences into

(n+1) classes, so that the set of sequences in any class form a dominating set. Then we will be done by

the pigeonhole principle, since some class will have at most 1
n+1

(
2n
n

)
balanced sequences. To construct

such a partition, for any balanced sequence A let f(A) denote the sum of the positions of the ones in
A( mod (n+1)). For example, f(100101) ≡ 1+ 4+6( mod 4) ≡ 3 mod 4. A sequence is in class i if
and only if f(A) ≡i mod (n+1). It just remains to show that every class is indeed a dominating set,
that is, for any class Ci and any balanced sequence A not in Ci, A has a neighbor in Ci. This isn’t
difficult: if A begins with a one, observe that moving this one immediately ≡ f(A) + kmod(n + 1).
Hence simply choose k ≡ I − f(A) mod (n+ 1), and then by shifting the first one to the right of the
k-th zero we end up with a sequence B satisfying f(B) ≡imod(n + 1). Hence B is a sequence in Ci.
The case when A begins with a zero is similar. Thus each class is indeed a dominating set and we are
done by the first paragraph.
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